skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Næraa, Tomas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Typical analyses of otolith microchemistry use calcium, a major constituent, as an internal standard, setting its value as a constant and ignoring any potential variations. In fact, patterns do occur in otolith Ca deposition, as can be observed either by repeating the analysis, by creating two-dimensional maps of Ca, or both. Here we present evidence of Ca variations in fish otoliths from analyses using synchrotron-based scanning X-ray fluorescence microscopy, electron microprobe analysis, and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). 2-D maps of otoliths created with LA-ICP-MS indicate that Ca is elevated where especially Zn and P are low, and vice versa, suggesting that spatial variations in protein deposition may affect concentrations of Ca. We encourage others to examine Ca concentrations in their biomineralized samples to check for variations, using LA-ICP-MS and other methods. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  2. Abstract Anthropogenic deoxygenation of the Baltic Sea caused major declines in demersal and benthic habitat quality with consequent impacts on biodiversity and ecosystem services. Using Baltic cod otolith chemical proxies of hypoxia, salinity, and fish metabolic status and growth, we tracked changes from baseline conditions in the late Neolithic (4500 BP) and early twentieth century to the present, in order to understand how recent, accelerating climate change has affected this key species. Otolith hypoxia proxies (Mn:Mg) increased with expanding anoxic water volumes, but decreased with increasing salinity indexed by otolith Sr:Ca. Metabolic status proxied by otolith Mg:Ca and reconstructed growth were positively related to dissolved oxygen percent saturation, with particularly severe declines since 2010. This long-term record of otolith indicators provides further evidence of a profound state change in oxygen for the worse, in one of the world’s largest inland seas. Spreading hypoxia due to climate warming will likely impair fish populations globally and evidence can be tracked with otolith chemical biomarkers. 
    more » « less
  3. null (Ed.)
    Accurate age data are essential for reliable fish stock assessment. Yet many stocks suffer from inconsistencies in age interpretation. A new approach to obtain age makes use of the chemical composition of otoliths. This study validates the periodicity of recurrent patterns in 25 Mg, 31 P, 34 K, 55 Mn, 63 Cu, 64 Zn, 66 Zn, 85 Rb, 88 Sr, 138 Ba, and 208 Pb in Baltic cod (Gadus morhua) otoliths from tag–recapture and known-age samples. Otolith P concentrations showed the highest consistency in seasonality over the years, with minima co-occurring with otolith winter zones in the known-age otoliths and in late winter – early spring when water temperatures are coldest in tagged cod . The timing of minima differs between stocks, occurring around February in western Baltic cod and 1 month later in eastern Baltic cod; seasonal maxima are also stock-specific, occurring in August and October, respectively. The amplitude in P is larger in faster-growing western compared with eastern Baltic cod. Seasonal patterns with minima in winter – late spring were also evident in Mg and Mn, but less consistent over time and fish size than P. Chronological patterns in P, and to a lesser extent Mg and Mn, may have the potential to supplement traditional age estimation or to guide the visual identification of translucent and opaque otolith patterns used in traditional age estimation. 
    more » « less